Has anyone tried cinnamon? It seems that cinnamon inhibits the process that deactivates the insulin receptor (I presume when glycogen reserves are full). Or has anyone tried alpha lipoic acid? It seems ALA directly activates the insulin receptor.


http://content.karger.com/ProdukteDB...oduktNr=225963
Abstract:
Bioactive compound(s) extracted from cinnamon potentiate insulin activity, as measured by glucose oxidation in the rat epididymal fat cell assay. Wortmannin, a potent PI 3′-kinase inhibitor, decreases the biological response to insulin and bioactive compound(s) from cinnamon similarly, indicating that cinnamon is affecting an element(s) upstream of PI 3′-kinase. Enzyme studies done in vitro show that the bioactive compound(s) can stimulate autophosphorylation of a truncated form of the insulin receptor and can inhibit PTP-1, a rat homolog of a tyrosine phosphatase (PTP-1B) that inactivates the insulin receptor. No inhibition was found with alkaline phosphate or calcineurin suggesting that the active material is not a general phosphatase inhibitor. It is suggested, then, that a cinnamon compound(s), like insulin, affects protein phosphorylation-dephosphorylation reactions in the intact adipocyte. Bioactive cinnamon compounds may find further use in studies of insulin resistance in adult-onset diabetes.


http://www.ncbi.nlm.nih.gov/pubmed/17274632
Abstract
Alpha-lipoic acid has cytoprotective potential which has previously been explained by its antioxidant properties. The aim of this study was to assess LA-induced-specific cytoprotective signalling pathways in hepatocytes.
RESULTS:
Alpha-lipoic acid decreased actinomycinD/TNF-alpha-induced apoptosis, as did the antioxidants Trolox and N-acetylcysteine. The activation of PI3-kinase/Akt involving phosphorlyation of Bad markedly contributed to the cytoprotective action of alpha-lipoic acid. Alpha-lipoic acid but not other antioxidants protected against actinomycinD/TNF-alpha-induced apoptosis via phosphorylation of the insulin receptor. Computer modeling studies revealed a direct binding site for alpha-lipoic acid at the tyrosine kinase domain of the insulin receptor, suggesting a stabilizing function in loop A that is involved in ATP binding. Treatment of immunoprecipitated insulin receptor with LA induced substrate phosphorylation.
CONCLUSIONS:
Alpha-lipoic acid mediates its antiapoptotic action via activation of the insulin receptor/PI3-kinase/Akt pathway. We show for the first time a direct binding site for alpha-lipoic acid at the insulin receptor tyrosine kinase domain, which might make alpha-lipoic acid a model substance for the development of insulin mimetics.